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We discuss a construction of a wormhole with the following proper-
ties: the wormhole connects to the same asymptotic region and is one-way
traversable i.e. there exist timelike curves that start and end in the same
asymptotic region and go through the wormhole. Moreover it is possible
to satisfy the energy conditions. From any point in the asymptotic region
there exist closed timelike curves.

PACS numbers: 04.20. Gz

1. Introduction

In one of his books, the science fiction author Lem [1] describes an as-
tronaut, traveling alone in his spaceship with a broken steering which he is
unable to repair. The spacecraft is sucked into a strong gravitational field
and suddenly there is a second person in the spaceship who turns out to be
the same astronaut but from the next day. Then a discussion starts whether
or not it makes sense to try to repair the spaceship together.

Already Einstein [2] worried that his theory of relativity might allow
for spacetimes with closed timelike curves. Gödel [3] constructed a cosmo-
logical model where this phenomena can happen. More recently renewed
interest focussed on the possibility of constructing such time-machines with
the help of “wormholes”. Wormholes are spacetimes with non-trivial topol-
ogy in which a kind of tunnel exists connecting distant parts in the universe.
These wormholes may not only serve as shortcuts in space but some also

∗ Presented at the Workshop on Gauge Theories of Gravitation, Jadwisin, Poland,

September 4–10, 1997.

(1025)



1026 P.C. Aichelburg, F. Schein

for timetravel. That the famous Schwarzschild black hole contains a worm-
hole was realized only one year after Einstein formulated his field equa-
tions: Flamm [4] recognized that the hypersurfaces of constant Killing time
through Schwarzschild spacetime, when embedded in Euclidean space, may
be illustrated by paraboloiods, revealing that these hypersurfaces consist of
two asymptotic flat sheets. These sheets are connected by a narrow throat,
described as a “bridge” by Einstein and Rosen [5] in 1935. The notion of
“wormhole” was introduced in 1955 by Wheeler [6] in his famous book on
Geometrodynamics.

The Schwarzschild wormhole however is non-traversable: the throat
shrinks under its own gravitational attraction to a singularity thereby pre-
venting the two asymptotic regions from being causally connected. Mo-
tivated by this deficiency Morris and Thorne [7] constructed traversable
wormholes and pointed out that these may be used as time-machines. How-
ever, from general properties one can show that in these constructions anti-
gravitating matter has to be present. In the last decade a large number of
papers studied the properties of traversable wormholes. On the one hand
the violations of the energy conditions for matter at the throat and on the
other the occurrence of closed causal curves [8–18]. Most of the wormholes
discussed in the literature are spherically symmetric and connect to distinct
asymptotically flat regions. If however the wormhole is to connect to the
same asymptotic of the universe, spacetime can be at best axially symmet-
ric. Moreover, gravitational attraction will pull the two mouths of the hole
together and spacetime will not be static.

In what follows we elaborate on a construction of a wormhole recently
given by the authors [19] that overcomes the above mentioned difficulties:
The wormhole is static, (one-way) traversable and connects to the same
asymptotics. Moreover the energy conditions can be satisfied. On this
spacetime closed timelike curves exist from any point in the asymptotic
region.

There exist two important theorems about the existence of wormholes:
Hawking [18] in his paper on chronology protection showed, loosely speak-
ing, that for the construction of a time-machine one necessarily needs to
violate the energy conditions. Friedman et al. [20] on the other hand proved
a “topology protection theorem”, by which it is impossible, under certain
assumptions, to probe the non-trivial topology i.e. traveling or sending light
rays through the wormhole from the asymptotic region. Both theorems
do not apply to our construction: Hawking’s theorem refers to spacetimes
where closed causal curves exist from a certain time on ( or up to), while
our solution is an eternal time-machine. Friedman’s conclusion require that
spacetime is globally hyperbolic, a requirement which is obviously not met
by our construction.
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The exterior region of the wormhole is that of two charged shells held
in static equilibrium by their electric repulsion. The interior is a Reissner–
Nordström black hole. The transition between the two regions is achieved by
two shells of charged matter. The matching can be made exact by applying
the image method in analogy to the construction given by Lindquist [21],
who considered the time-symmetric initial value problem for Einstein–Rosen
manifolds.

2. The exterior solution

The exterior field of a system of charged bodies which are held in equilib-
rium by a balance between electrostatic repulsion and gravitational attrac-
tion is given by the Majumdar–Papapetrou solution of Einstein–Maxwell
equations. In Cartesian coordinates this solution has the form

ds2 = −V −2dT 2
+ + V 2(dx2 + dy2 + dz2) . (1)

With an appropriate ansatz for the electromagnetic potential, A = ± 1
V

dT+,
the Einstein–Maxwell field equations reduce to the three dimensional, flat
space Laplace equation,

△V (x, y, z) =

(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)

V (x, y, z) = 0 . (2)

This fact offers the possibility to overcome the problem of axisymmetry
and hence to construct an exact wormhole solution: We cut out from the
Majumdar–Papapetrou spacetime the interior of the histories of two (non-
intersecting) spheres S+

i (i = 1, 2) and require the potential function V to be
constant on the surfaces. The problem is analogous to that of finding the
electric potential outside two charged metal spheres. Such solutions can be
found for any location and radii and arbitrary values of the potential on the
spheres [22].

In what follows we give an explicit construction for the symmetric two-
body problem. We choose the z-axis to point along the line of symmetry
joining the two spheres S+

i with radii R and center them at z = ±d1.
Moreover, we fix the value of the potential function on the spheres to

V |
S+

i

= V0 = 1 +
m1

R
. (3)

In addition, we assume that V (~x) tends to one for |~x| → ∞. This choice
ensures that for large distances of the two spheres the field is that of two
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particles with mass = charge = m1. The image masses mn to make V
constant on S+

i have to be located on the z-axis at z = ±dn, where

dn = d1 −
R2

d1 + dn−1
(n > 1) , (4)

mn = −
mn−1R

d1 + dn−1
(n > 1) . (5)

The resulting expression for the metric potential V (~x), ~x = (x, y, z), is

V (~x) = 1 +

∞
∑

n=1

(

mn

|~x + ~dn|
+

mn

|~x − ~dn|

)

. (6)

3. Wormhole geometry

Having found the exterior solution we match a Reissner–Nordström black
hole to the interior of the spheres. This requires the introduction of two
infinitely thin shells of charged matter at the transition surfaces S+

i . The
wormhole is obtained by gluing different asymptotic regions of one and the
same extended Reissner–Nordström spacetime to the surfaces S+

i . Hence,
the metric interior to the shells has the form

ds2
−

= −f(r−)dT 2
−

+
dr2

−

f(r−)
+ r2

−
(dϑ2 + sin2 ϑdϕ2), (7)

where

f(r−) = 1 −
2m

r−
+

e2

r2
−

(|e| ≤ m) . (8)

Let us take the timelike surface S−

1 defined by r− = RV0 lying outside the
event horizon in one asymptotically flat region, say region I (see Fig. 1),
of the given Reissner–Nordström spacetime and cut off the asymptotically
flat part. In order to match the surface S−

1 to the exterior region at the
surface S+

1 we have to determine the identification of points on S+
1 and S−

1 .
Therefore we introduce a spherical polar coordinate system (T+, r+, ϑ, ϕ)
centered at z = −d1 such that sphere S+

1 is given by r+ = R. (Note that we
have the choice of taking a right or left handed coordinate system pointing
to the positive or negative direction of the z-axis.) The metric (1) of the
exterior region takes the form

ds2 = −V −2dT 2
+ + V 2(dr2

+ + r2
+(dϑ2 + sin2 ϑdϕ2)) . (9)
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Fig. 1. Wormhole geometry: (a) interior Reissner–Nordström region, (b) schematic

Penrose diagram of the exterior Majumdar–Papapetrou region.

We have not distinguished angular components of the coordinate patches (7)
and (9) because now we identify points with equal values of ϑ,ϕ and equal
proper time τ on the shells S+

1 and S−

1 , S+
1 ≡ S−

1 ≡ S1. Hence, the induced
metric on the shell S1 is

ds2|S1
= −dτ2 + (RV0)

2(dϑ2 + sin2 ϑdϕ2)). (10)

To construct a traversable wormhole we repeat this procedure for a surface
S−

2 in the asymptotic region II of the given extended Reissner–Nordström
spacetime lying in the causal future of S−

1 . This leads to a second shell
S2. Although the coordinate system (7) does not cover regions I and II, it
is not necessary to explicitly write down different coordinates which cover
the whole spacetime. By symmetry all results such as energy density and
pressures of the shells are valid for both.

4. Energy density and pressures of the shells

Consider shell S1. Denoting by n the unit normal to S1 (directed towards
the Majumdar–Papapetrou region), and by u = d/dτ the shell’s velocity, the
components of these vectors with respect to the different coordinate systems
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(7) and (9) are given by

uα
+ = V0 (1, 0, 0, 0) , nα

+ =
1

V0
(0, 1, 0, 0) , (11)

uα
−

=
1

√

f(RV0)
(1, 0, 0, 0) , nα

−
=
√

f(RV0) (0, 1, 0, 0) . (12)

Applying the usual formalism of thin shells the stress-energy tensor Sab of
the shell can be expressed by the jump in the extrinsic curvature [Kab] on this
surface [23]. In terms of the intrinsic coordinates (τ, ϑ, ϕ) Sab is diagonal,
the energy density σ depends on the angle ϑ and the tangential pressures
are numerically equal and constant on the surface:

σ(θ) = −
1

4π
[Kϑ

ϑ ]S1
(13)

= −
1

4πV 2
0

∂V

∂r+

∣

∣

∣

∣

S1

−
1

4πRV0

(

1 −

√

1 −
2m

RV0
+

e2

(RV0)2

)

, (14)

p =
1

8π

(

[Kτ
τ ] + [Kϑ

ϑ ]
)

S1

(15)

= −
1

8πRV0





1 − m
RV0

√

1 − 2m
RV0

+ e2

(RV0)2

− 1



 . (16)

The properties of the energy density and pressure can be inferred by de-
creasing the mass and charge parameters m and |e| (note that |e| ≤ m ) of
the inner Reissner–Nordström region,

lim
m,e→0

σ(θ) = −
1

4πV 2
0

∂V

∂r+

∣

∣

∣

∣

r+=R

, (17)

lim
m,e→0

p = 0 . (18)

We can see that the sign of the surface energy density crucially depends on
the sign of the normal derivative of V (~x) on the surfaces Si.

In [19] we have shown explicitly that for R
d1

≤ 1
3 this quantity is strictly

positive on the surfaces Si for arbitrary values of θ and positive mass pa-
rameter m1. We also argued that numerical analysis indicate a critical value
for R

d1
beyond which the energy density changes sign at the inner pole. Now

we are able to prove that this is not so. This stronger result can be obtained
by applying the classical maximum principles developed for elliptic partial
differential operators [24]. From the boundary point lemma together with
the weak and strong maximum principles it follows that the outward normal
derivative of the function V (~x) (pointing to larger radial coordinate values)
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is strictly negative. As a consequence, for m, e = 0 the energy density σ is
strictly positive, i.e. σ(θ) ≥ σ0 > 0. This proves that for all R < d1 and
for sufficient small values of the parameter m and |e| not only is the energy
density σ positive but all energy conditions are satisfied.

5. Causal structure

From the Penrose diagram of the extended Reissner–Nordström space-
time and the schematic drawing of the exterior Majumdar–Papapetrou re-
gion (Fig.1) one sees that the wormhole differs from previous models [7]: one
wormhole mouth lies in the future of the other, or to put it differently, the
“throat” is not a timelike hypersurface but (according to the symmetry) a
spacelike slice half-way through the Reissner–Nordström wormhole. In ad-
dition, any spacelike slice which avoids the singularities (e.g. hypersurface
Σ in Fig. 1) cuts S1 and S2 and connects two separated asymptotic regions.

Because any point in region II can be connected by causal curves through
the wormhole from any point in region I (Fig. 1) an observer starting from
the outside and entering the wormhole through S1 is able to re-emerge at
S2 arbitrary far in the past. If the time gap resulting from the wormhole
traversal is large enough he is able to travel back to his starting point in
the exterior region and meet his “former self”. This makes clear that any
event in the Majumdar–Papapetrou region lies on a closed causal curve and
therefore the wormhole is an “eternal” time machine.

Notice that the condition of continuity of the induced metric on the
surfaces S1 and S2 does not fix the identification uniquely. There remains
the possibility to introduce a constant but arbitrary shift in time. Hence,
one is able to arrange the wormhole construction in a way that for example
observers freely falling through the wormhole along the z-axis (starting with
a given initial velocity at z = 0) come back to their starting point in space
and time.

Multiple traversable and non-traversable wormhole geometries may be
obtained by introducing additional shells in the Majumdar–Papapetrou re-
gion and connecting them to the inner Reissner–Nordström solution.

We thank W. Israel and P. Chruściel for clarifying discussions and R. Beig
for drawing our attention to the strong maximum principle, which helped to
strengthen our conclusions. We also acknowledge support from the Funda-
cion Federico.
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